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THE INITIATION ~ANSIENT IN DILUTE EXPLOSIVES

Hildon Fickett
Los Alanms National Lakratory
Los Alms, New Mexico 87545

In thp context of the shock-lnltfatlon problan, we study analytically the
first effects of chunistry, treating a small chanical hett release as a
perturbatl~n on an Inert flow. Specifically, we study tl’eInltlal
transient In plane-shock initiation In a dilute ●xplosfve where the
chanical energy Is small relative to the mechanical-thmnil energy. The
vehicle for the study Is the mathematical analog for reactli!eflow recently
proposed by the author.

The solution resembles a double refraction: to first order, the
pressure or density is a superposition of two forward-~olng waves, both
originating at the rear boundary, and carrying the srnnefuni’t{on,but
running at different velocities. Surprisingly, this first-order solution
is independent of the sensltlvlty of the reaction rate to the state, which
appe~rs only at second order.

1. INTRODUCTION

We study anal~tically a limiting case bf the
general question, How does the process of plane-
shoci fnltlation depend on the properties of the
reaction rate?” To fix tdeas, consider a system
obeying the usual equations of motion (the Euler
equations for Invlscid carlpresslbleflow with
chmriicalrgcctlon [1, Sec. 4A3]), wfth reactloll
proceeding according to c!first-order Arrhenius
rate law,

r ● k(l - x)e-T*/T . (1,1;

Here k Is the rate multiplier, T* IS the
activation tanperature and A is the cunposltion
or degree of reaction (for reaction A + B, i is
the mass fraction of B), For theproblern of
Interest here, themulttplier k Is a trivial
pareneter, serving only to set the time scale.
The significant parameter is T*; It detemtines
the:ensitivit~ of the rate to the state. (In
thi; paper, we use the word “sensitive” only in
this sense, and not In the more cumnon sense of
the sensitlvity~the explosive to sonw
Initititinqstimulus.)

Calculations show that the nature of the
initiation process depends strongly on the
sensitivity of the rate, Figme 1 contrasts
calculated ~nitiatjolltransients for sensitive
and Insensitive rates [2]. The s stan is a
polytroplc gas ulth reaction A + ~ obeying the
first-order Arrhenlus ratu(l .1), The detonation
is produced by a ronstant-velocity piston, end is

overdriv?n
Y

Ith a final steady-wave velocity O
which is 1.6 times the CJ value. The
{fisen$ft~verate hds ~+ . 0, and the sens~tjve
one hns ~ ■ 40T-. witi T- the i,lltial
tunperhtureo Th;-solu~.io;is presented ns a
sequence of snapsh>ts cf the pressure profile (h
is a Lagrangfan space v!riable), plus the
shock-pressure history.

The results for the two case$ are quite
different, In the insen!itlve case, Fig. la, the
reaction zone always has about the same shape as
the final steady state, ald the shock pressure
rises to its final steady value in 8 smooth,
mnnotorm fashton. In the sansltive case, most of
th~ initial rea(-t!ontakes pla~e at the piston,
where the shocked mh&erial has been hot the
longest.
canpress
reaction
growS as
reacticn
i:, they
procseds
pressure

This hot spot glvss rise to a reactive
a,lpulse. The pul:;eaccelerates the
locally by cmnpr~ssion heattng, and
It goes, feedtn m the heat of
The profiles itrure hunped - - that

have pressure maxim! . - as the pulse
As It overtakes th! shock, the”shock

rises rapidly and thtm falls, trackil~g
the shape of the rulsp,

A much-used tnol for studying flows of this
type Is the shock-chanqe equation [1, Sec. 4Ab,l.
He wite It down here for later reference. It
expresses the rate of change of the shock
strength as the sum of a gradient term and a
reaction temr:

dpsldt ■ .apy + Mr. (1.2)

1
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fig, 1, Calculated shock Inltlatlon for (a) Insen!!tlve, and (b) sensltlve renctlcm rat~!.

Here p$ Is the shock pressure, p - (~p/bx)
IIIs the pressure gradient. n 4$ t ISthermlcl y of

the reaction, r fs the reaction rate, an:,: and II
are pxft\ve-deflniLe stata fun’:tton’!,
quantttles rr~er to tha shocked state,

Some quastlons about tha Initiation problan
are:

(1) [~p;hat rates will smm profflas have n

(2) Hhat ar~ the Important parmneters of tha
rate (@g. sanslttvlty, A-depandenca)?

(3) Hhtch of the two terms of the shock-change
equation fs more Importnnt?

our matht?natlcalanalo (set of model aquatluns)
of raactlva ilow [31, ! n the ltmlttng case of’
small heat of raactton q, with sane restrictions
on tha form of the rata function. He use n
perturbation treatment, wlththe Inert (q ●O)
case as the unp~rturb,?dreference fl~w, ml the
ratio of chunlcal to mechanical anergy as the
smallness paramatar c.

Tha solution rasmmbles a double refraction:
ft IS the superposition of two forward-going
wavas, both orlgtnattllgat the rear boundary, but
travf,ltngat different spc~ds, Both waves crri-y
thu same function: tha (staady) cunposltion
history of the referenca flow.

He answer thesa questions analytically, for
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Exmnination of this solution (8L first order
of the wrturbatlon) yields Several ~nterestln9
results;

(1) Apreclse criterlondlvldes all rate
functions Into two classes: those which produce
hmpedproflles and those which do not.

(2) The above criterion, and the solutions for
density P and pressure P, depend Only m the
A-dependence of t~e rate, and tIOt on Its
sensitivity to the state. hp~ence on the
sensitivity Wpears only at second orckr.
(3) Of the two terms In the shock-chacge

equation, the reaction term danlnates: It Is
larger In magnitude than the gradfent tem at all
times.

(4) In acunpari son like that of Fig. 1, we
give calculated results for a simple rate
functfonfran each class of the Itm (1) above.
Oneresanbles the Insensftlve case of Fig. 1; the
other is more like the sensitive case.
Appropriate A-dependence of the rate produces
r~ults similar to those characteristic of high
sensitiv~ty.

How would we achieve our llmltlng case In
practfce7 Dilutlon provides a dtal on the
chsnlcal energy density, and the stren th of

fdrive provides a dial on the mechanica energy
density. But there Is a constraint: at CJ, the
ratio of these two energies ts of order one. To
make th’. rat~o small, we must overdrive the
detonation. In practice, the available strength
of drive is limited. A convenient way to get the
desired small energy ratio (large overdrive) Is
to fix themechanicul ●nergy by choosing a
standard driver, and then make the chenical
energy small by dilution. This is the approach
used by Soloukhin and Brochet [4] In their study
of the onset of Instability tn gaseous systansi

Mu state the problun In Sec. 11, perform the
analysls in Sec. 111, give the resulks In
Sec. IV, displ~y the exanples in Sec. v, and
sunrnarlzethe r=ults tn Sec. VI. The sklntntng
reader should skip Sec. 111 (analfilc) and
posstbl also Sec. II (datalled statan~:ntof th$

!problar,, The short recapitulation at tho
beglnr,iugof Sec. IV should help to bridge the
gap.

11, PROBLEM

The analog [3] 1s:

Pt+pxmD (2.1)

Atmp

P ■ P(e,A) equat!on of state

r ■ r(p,A) reaction rata.

Here x and t are “dfstance” (better: particle
label) and time, p and A are densit and

1’cunpos!+~on, and p is “pressure,” T Q choice of
variable names Is discussed in [3]. Those having
a less direct connection wfth thv orlgtnal systan

are In quotes here. Subscripts t, x, and (below)
p and A denote partial derivatives. Other
subscripts (below) are part of the symbol.

The fixed-can sitlon sound speed, which is
ralso the (acoustic characteristic speed, Is

c ■ pp. For the equation of statewe take

P=4(92 +0) , (2.2)

having

C’D,

und constant “heat of reaction” q.

We study the Initiation transient of an
overdrive detonation orlven by a constant
rear-boundary condltlon (analagous to a
constant-velocftyplston). Using (2.2) in (2.1)
and rnddlngthe appropriate Ipitial and boundary
condltlons, we have as the governing equations
for our problem,

Pt,+ PPx + @x ● O

At ■ r(p,~)

shock: Asmo

D ■ %Ps

Initial (on t ● O): Pi ■ Aj ■ o

boundary (on x ■ O): P= Pb(t,)

● o, t <0

■ 00, t~o
.—

I (2.3)

I

Subscript s denotes the state Inmdiatel:’ behind
the shock, D is the shock velocity, subscript i
denotes the initial state, tubscript b tienotes
the (rear) boundary, and subscript o denotes the
reference flow deftned below. The initial
condition P ● O simplifies the shock rel?tion
(3, SeC. V1~). The boundary conditlonpb(t)ls
a step function, with P junping from zero to the
constant valua P. at t ● 0,

ticfind th~ :Glutfon for small q, treating q
as a small perturbation ot’the reference or
unperturbed flow, for which we take the solution
of the s&me problem with q ■ 0. He show in the
next section, b scaling the equations, thtL the

Yappropriate sma lness pareneter is:

c ■ cl/cg , (’2,4)

essentially the ratio of tha chenical to
mechanical energy,

The t-x tiiagrfsnfor the flow is shown in
Fig. 2. The acoustic characteristics, marked (+)
In the figre, carry Infotmatfon frm the
boundary to the shock. The other famtlyof
characteristics [3] are less fmportant in the
present problem and wtll not be mentioned furth~r

3
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here. The time ? shown in the figure Is the time
at each x after passage of the shock. It will be
used in the frmne transformation of the next
sect<on.

The reference flow Is a flat-topped shock,
ste~,dyfor all time. The shock velocfty Is
O ● 0, ●I#o, with constant state (behl dthe
shorkfp =po, c=co=pg, p=p ■

I ??The characteristics and s ock pat of g. 2 are
straight lines. Reaction prcceeds behind the
shock and A Inmeases with time, but this has no
effect on the state because the systan hss been
decwpled bytaklngq ■ 0. For the steady
solution for k, we first def?ne the mathanatlcsl
function Ao(y) (whlchwlll appear later with
different arguments) as the solution of the
ordinary differential equation:

dAG/dy ■ r(po,Ao) , (2.5)

Ao=Oaty=O .

‘t’hesteady solutlon for A Is Ao(?o), where
I Is the tfme T (Fig. 2) after snock passage
ta each x for the reference solution, that 1s,

To=t-xfco. (2,6)

He call the function Ao(y) the reference
cunposltion fmction.

He place sane restrictions on the form of
the rate function: Me assume that reaction
proceeds In the forward dlrect~un only, so that
A (~) Is a monotone-lncreasin function, and
t~at reaction Is canplete in !Inite time, We
also make the sllghtly more restrictive
asswnptlon, not needed for all of the

I

x

Fig, 2. Characteristic ~nd shock paths.

conclusions, that r(p,~) be expressible, like
(1.1), as the prod~ct of functions of p and A,
that 1S,

r(p,A) ■ kf(p)g(A) . (2.7)

111. ANALYSIS

The plan is as follows, Ftrst we scale the
equations to determine the appropriate smallness
paraneter. Then we transform to an accelerated
frame In which time Is measured fran the shock.
In the new frfsne,we linearlze the equations
about the reference (steady q ■ O) solution. We
solve these linear equations for the perturbations
In p and A by Integrating along characteristics.
Finally, we transform back to the original franc.

u

He scale our quatlons (2.3) to detmnlne
the appropriate smallness parameter for tne
perturbation. Oeflne a characteristic time t*, a
characteristic length x*, and the corresponding
Implied characteristic veloclty v* ■ x*/t*. The
substitution

x’ ■ x/x*, t’ _ t/t*, r’ ■ r(v*p’,A)t* (3.1)

p’ ■ O/v*. q’ ■ q/(v*)2

gives the Identical set of equations for tile
primed variables.

He choose v* ■ co, so that Po’ ■ co’ ● 1.
Our dspendent variables are thus of o-der one.
He then take t* ■ 1, and choose the ratr
multipllw k in (2.6) for unit reaction time In
the reference flow (for which f(p) ● f(~o) ■

f(copo’) ■ f(c ) ■ constant). This makes
!our Independent vartables of order one. The

appropriate smallness par8neter is then q’, which
me call c:

Cmqlm dcg , (3.2)

as stated In (2.4), Our solution is valld for
C<<l.

gove~?~ $~%%~ea%h%j%% j;’(2,3),
with c replacing q (and with the p-dependence of
the rate resealed as requfred by (3,1),

Transformation to Accelerated Fr8ne

He transform to the accelerated frame In
whfch time Is mwasured frcsnthe perturbed shock.
The distance K fs unchanged, but the new time 1
at each x Is measured fran the shock, as
Indicated in Fig, 2. In the new trame, Fi 3,

7“the shock fs the x axis, and the character sties
have negative slope. In the figure, the
characteristics are drawn as straight lines, as
they are for the linearized equations. The point
I* is for later referenc~,

4
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BOUNDARY X= O

r

I SHOCK z=O
00

x

Fig. 3. Accelerated franc. Time T Is ,mea-
sured frfxnthe perturbed shock.

Define the shack path In the orlglnal frmne
bythefunct!on ts(x), the time of arrival of
the shock .sta Iven x, so that the shock
velocity is D(x!=,/(dts/dx). ,hetransforma-
tton equations are:

x=x, Tmt - ts(x) , (3.3)

with partial derivatives xx
7X ■ -l/D(x), ?t ❑ 1. Part
f ■ p or A transform as fol

fx beccmes fx - D-

ft becanes f? ,

In the nr~ frame the systan

■ 1,X
!

● o,
al der vatives of
Ows:

fl (3.4)

(2.3) beCOmeS

(P- D)% - PhJx” -ISC(AT- OAX) . (3.5)

~T.r

shock; t ■ O: ~ ■ $Ps

boundary, x ‘ 0: pb ■ P. r constant, given ,

(with is ■ O; and p
E

■ O for t < 0 under-
stood). Here D IS (x), the unknwn shock
velocity; the transformation puts it in the
Coefficients of the first equation. The
boundary cond{t~on Is unchanged. The shock
relation P$(x) ■ 2D(x) Is also unchanged, but
now applies on the new shock path (the x axis).

Linearization

The reference flow Is the r =0 solution:
the steady flat-topped shock with P ■ co ● 1,
0 ■4PO=IS, and A ■Ao(?). He write our
dependent variables as peturbatlon expansions:

p(x,l) = Po+ CP1(X,T) +O(d) (3.6)

A(x,?) = AO(T) + CA1(X,?) +O(C2)

D(x) ■00 + all(X) +O(C2) ,

with perturbation functions PI. AI, and 01
of order cx’te,and order parameter c << 1.
Substituting these Into (3.5) gives to order c

(Po - DO)PIT . p~oplx ■ -+ro (3.7)

XIT ■ ao~l + boAl ,

where an and bn are the Bartial derlvtitives
of r wl~h restict to P and A, evaluated In the
reference state. In obtalnlng the f~rst equation
we have used (2.5), A. ■ ro. He simplify by

Tsubstituting the numer cal values P. ■ 1, 00 ■ $
in the first term, and 00 ■ $ in the second.
In the second term we replace P. by Co, but
retain the synbol co instead of the nunerlcal
value as ranlnder that the coefficient Is a
velocity. The canplete set of linearized
governing ●quations Is then

L::~~~:Id:
In these equatlols, ro, a

f’
and ho Pr?

known functions of T. For a g ven r(p,A) +hey
can be calculated fran the steady rate equa:ion
(2.5). The two (Jifferentlalequations are
uncoupled: (3.8a) can be solved by its??f for

{1
P1 x,1 , and then (3.8b) can be solved for
Al x T . The shock-veloclty perturbation
01 x} 1s obtafnedfrcsn PI(x,T=O) throughthc
shock relation (3.8c).

Solution

Me first solve the equation of motion
(3.8a). In characteristic form It Is

dpl/d? ■ - ro(T) on dx/dT ■ - Co . (3.9)

The characteristics are straight llnes of slope
-c. originating on the rear boundary x ■ O ano
running down to the shock T ■ O, as shown in
Fig. 3. lieIntegrate (3.9) along a
rh~racterlstlc, $tartlng at the boundary. Let
T*, Fig. 3, be the starting point
characteristic. Integration fran

of a particular
T* tc sae T on

5
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the characteristic gives

P1(d-q(T*) ■ -I(T,T*) = -@o(T’)dT’ . (3.10)

The boundary value P (T* Is zero by the
41boundary condition ( .8d . We can write 1 In

terms of he reference canposltlon function
AO(Y) =

r
ro(y’)dy’ defined by (2.5) by

writing t as the sun of two Integrals:

J1(1,1*) ■ oTro(y)ciy’ -~:o(y)dy (3.11)

■ AO(T)- AO(T*)

He want PI as a function of x and T. For a
given point (x,f), t● is the time at which the
characteristic through the point Intersects the
x MIS. Thus T* ■ T + x/en, Fran (3.10) and
(3.11) we have

lq(x,T) ■ ko(T*) - AO(T)

7* ■ T + x/c
o“

For the shock velocity, evaluate (3,12
T . 0 andu~e the shock relation (30Sc)0 Tl
second A in (3.12) vanish% because A. Is

?zero dt he shock and we h ~e

3.12)

at
e

O,(x) ■ %Ao(x/co) . (3.13;

Knming o1(x,T), we can solve (3.8b) for
A (x,T~. At each x, (3.8b) Is an ordinary
d!ffer&tlal equatlonfor A1. Itssolutlonls

bol

I

-boy
A(x,T) ■ aoe “’e Pl(x,y)dy . (3.14)

For the pressuri, we Write p RS p ■ pn +
CP1, and find that, to first order, the
pressure perturbation pl Is pl ■ COP1, so
that pl Is the same as P1.

Transformation to Original Frame

Tn return to the original t-x franc, we must
replace T byt-ts(x), see (3.3). Because the
shock-velocity perturbation (3.13) Is non-zero
for all posittve x, the displacunent of the shock
frcxnIts reference locatlon becomes arbitrarily
large as x Increases, and the correction to
ts(x) is secular; at large x we have

t5(x) ■ x/oo +O(cx) . (3,15)

Thlsprmerty carries over into P1. Replacing
I in (3,12) byt - ts(x) and expanding each
A. function {n powers of c about the zeroth
order argument To “ t - x/Do, we find

pl(x,t) = Ao(a) - AO(TO) +O(CX) (3.16)

at-x/co

70 ■ t - Xloo“

The posltlon error arising fran the unbounded
shock dlsplacanent gives rise to a secular
second-order tem with coefficient proportional
to Y.. In the original t-x frune, then, our
first.order result does not apply to arbitrarily
large x (we have essentially the correct solution
but at ?.hewrong location). Because we are
Interested mainly In the Inltlal transient, this
is not {lserious llmltatlon. In any case, the
nature ~}fthe solutlon Is perfectly clear from
the ‘?sult (3.12) In the T-X franc. The result
(3.lJ) aPPlles in ●ltherfrmne, since it depends
only on x.

tiewill also need the gradient of P1.
Taking the derivative of (3.16) with respect to
x, and replacing the derivatives of Each A.
function with respect to Its argument by the
function ro, we have

Plx(%t) ■ (l/Do) lro(To) -+ro(a)]. (3.17)

!Vo RESULTS

tierecapitulate briefly. He have solved the
Initlatlon problen for small heat of reaction q
b treating q as a small perturbation (subscrl~t
Y1 on the reference q ■ O flow (subscript o),

writing the dependent vartables as

P(x,t) = 90 + cPl(x,tj , (fl.1)

etc. With suitable scaling, both P and P1 are
of nrder one; the results are v lid for values of

I
the smallness paraneter c ■ q/c much less
thm one. We discuss only the e~sity perturb~-
tion P1 and the shock-velocity perturbation
21; these display most of the Interesting
~hystCS. (For brevity, we use the term
perturbation” for CI1and 01; the actual

perturbations are of course CP1, and cO1.)
The pressure ~rturb~.tion is the same as the
density perturbation, and the A-perturbation
can be calculated from (3.14) If desired. The
reference flow is a steady, flat-topped shock
with p ■ co ● ~D . The reference

?canpos tion funct’?onAt(y), whtch appears with
two different arguments in the result, is thu
solution of the steady rate equation (2.5) for
the reference flow. Ulth argunent To “ t - X/D.
It Is the composition history in the reference
flow.

Density Perturbation

The density perturbation is

am :.= ““2)

r

O,(x,t) ■ A (m) - A (To)

J

o

T
o

■ t - x/D. ,

tbe shock-veloctty perturbation IS

Dl(x) ■ +~o(X/Co) . (4.3)

6
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ccsnmsltlon history on the boundary,
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IS just the
propagated

The density perturbation (4.2) Is the SIMI of
twotravellng waves. We call than the transient
or acoustic ueve (aqmnt a) and the s-e
(a~~). The steady wave propagates,the
reference Caposltlon history X (To) at the
reference shock velocity Do. T~us it iS
Identical to the steady ccsnpositfonsolution of
the reference flow. The transient wave
propagates the smne function, but at the
reference acoustic (= characteristic) speed,
which is twice as large (c. ■ 2DO). Thus the
transient wave passes through the steady wave and
overtakes the shock. This overtake fs canplete
In unit time; fran then on the transient IS over
and we have only the steady wave. Note that this
first-order density solution IS attached to the
unperturbed shock path (se~ discussion at end of
previous section).

Role of the Rate Sensltfvfty

Frcsn(4.2) we see that the ffrst-order
density perturbation does not depend on the rate
sensltlvlty. The reference canposltlon function
A (Y) ~S calculated in the constant-density
f!eld of the reference solution, so the
dependence of r on p has no effect, (This
statement Is strictly correct onl

!
If the rate

hss the assufnedproduct form (2.7 .

Crlterlon for a Hunp

By deftnltion, we have a hump if the
grad!ent Px ■ rplx changes sign with
increasing x at some point of o fixed-time
profile, Fran (3,17), Olx Is

Plx ■ (l/Do)[ro(lo) -~ro(a) ] , (4.4)

wilerer Is the reaction rate In the reference
~;~i,$!~;ff~~tf;;s applies, constder a

. Both a and T are llnear
decreasing functions of x. At the rear, x ■ 0,
we have a ■ T ■ t. At the front, x = Dot,
wehave To=8, a=4t. Thus wehavea##(44)
everywhere with equallty at the rear.
we see then that PIXL G at the rear, Hhat ‘
must r. do to make P1 change stgn at sone

tpoint? Consider firs anro(y), Fig. 4a, which
1s monotone decreasing, At the rear, ?0 anda
are ●qual, so r (To) ■ ro(a), and PIX is
wsitive, (In ?heflgu-e, the rear point Is
shown for a profile at t ~ 1.) At the fro~t,
70~Oanda=~!, so ro(a) is lest than
ro(f), ard Plx is still pos~tive. It Is

apparent ‘hat ‘or ‘h’s ‘ate’ ‘1! ““bepositive for all x and there w 1 be no hwnp, To
have a hunp, romust increase sutflctently
rapidly over part of Its range, as In Fig, 4b, If
the slope of ro(y) Is large enough, and t Is
mt too large, we can have ro(a) ~ 2ro(~o)
and t%us negative Plx over sane range of x, and

therefore a hump In the profile.

Shock-Chanqe Eauatlon

The shock-change equation for the analog is

dps/dt ■ -(c - D)r~ +#cr/D . (4.5)
1

Linearization of this quat.~un, with use of (4.4)
for olx. gfves

~w ‘
the first square bracket being the gradlent term
and the second the reaction term. He see that:

II
1 The reaction term Is always positive,
2 The gradient tem can have either sign,

depending on the form of the rate function.
(3) Thereactlon term dcninates: It Is never

smaller In magnitude than the gradient
tetm.

(4) The shock pressure is always monotone
Increasing; it does not overshoot,

v. EXAMPLES

liegive two exanples, one with, and one
without, a hunp. The rates are functions of A
alone, so the subscript o is unnecessary.

For no hunp, we take a monotone-decreasing
rate like that of Fig. 4a:

r m 2(1 - ~)1/2 (5,1)

A=l-(1-T)2

T=l-(1-A)l/2.

Thir rate is shown in Fig. 5a. The corresponding
solution (presented MS a sequence of snapshots)
is thown in Fig. 5b. Note the resanblance to
Fig. la,

For a hum. we take a normnonotonerate like
that of Fig. 4b~

r ■ k(A + 6)(1 . 1)1/2 ,

~B1. az(l . #)/(l +y

kTDl-
1

btanh-l (1 - A)’

IY= (a- l)/(a+l)] l-k?

a=l+ti, b: tnnh-l (

6<<1 ,

2,

/2/b ,

+6),

k . - 2a-1/2 tanh-l(al/2)

Flgure6a shows this rate for 6 ■ 0.05, It mocks
up a branching-chain mechanism with m induction
Zona, like that of hydrogen/oxygen and other
gaseous systans. It !s !Imilar to one we ha”e
used earlier [5], but with a pcwr of $ on the
the depletion ter?n,to make the reac~ion time
ftnitc. The solution is shown inFlg. 6b, It {s

7



ro

c

(a) NO HUMP

\

Flckett (T300B)

‘o

c

r— FRONT
0 x . Dot

(b) HUMP

Y Y

Fig. 4. General fom of the reactton-rate A-d@endence for (a) no hunp, and (b, hunp,

similar to the sensitive-rate case, FIQ, lb, in
having hlanpedprofiles and rise ln”sho~k -
pressure, but the shock pressure does not
overshoot.

VI. SUMMARY

The reference (unperturbed) flow is a steady
flat-topped shock in a material made inert by
setting Its heat of ruaction u to zero, This
flow has a steady reaction zone, but the
canposition varlatlon has no effect on the state
because the systan has been deccwpled by setting
q to zero.

9y turning on the heat of reaction (setting
q to a small positive value), we make the s~twn
(roughly speaking) into an mnpllfler with ain c
8 qlc$. It converts the canposition slgna!
of the referenco flow l~to a two-component
density St nal, with steady carrponentat the

7fundamental (original) frequency, and transient
canponent at the first harmonic frequency (the
exac+ factor of two being an accident of our
particular choice of equatlonof state), The
harmonic wave travels through the steady wave and
disap~ars into the shock, giving the flow the
character of a dwble refraction i

The wave shoes during the transient phase
depend onlyon the A-dependence of th~ rate
(evalueted in the constant state of the reference
flow), A nmotone-decreasing r(A) pruduces
n’motone proffles and gently rising shock
strength, as in Tig. 5 A sufficiently nun-
monotone r(A) produr.% hunped profiles and

rapldlyrlslng shock strength, as in Fig, 6,

Thenmre complicated analysls of the same
problen for the physical systan, as described by
the full Euler equat$ons, is in progress, The
results, although not so easily calculated,
appear to have the same general nature as those

They suggest the posslb’lity of
!~~~~~~r~&nethi~g about tt?eA-dependence of the
rate fran pressure measuranents In dilute
explosives. In this in:tance, as in others [3],
the analog has proved to be a rellable ulde to
the essential physics of the full set o?
equations, but much easier to work with,

ACKNOWLEDGEMENTS

I would llke to thank John Bdz~l for several
helpful discussions.

REFERENCES

1 Uildon Fickett and Willin C, Davis,
““ Detonation (University of California Press,

~erkeley, 1979).

2. Figure lb is fran W. Fickett, J, D, Jacobson,
and H. U, Wood, ‘The Method of Characteris-
tics forOne-Dimensional Flow with Chanical
ReactIon,” LASL Report 4269, July 1970,
D. 38. Figure la is a similar unpublished
calculation.

3. W, Fickett “Detonation in Miniature,” ~,
J. Phys. ~, 1050-59 (1979).

R



Fickett (T30N)

4, R. I. Soloukhin and C. Brochet, “The
Development of Instabtllties In a Sho&ked
Exothennic Gas Flow,” Canbust. Flmne, 18,
Wj647~~972). For a sumnary, see [1],

. .

2

‘O 0.2 0,4 0,6 0,0
Aaf T

1.0

0.8

0.6

%

0.4

0.2

0 0 I
x

1.0

2

Fig, 5. No-hunp exmnple (monotone A-dependence).

5. U. Ffckett, J. D. Jacobson, and G, L. Schott,
‘Calculated Pulsating One-Dimensional
Detonations with Induction-zone Kinetics,”
AIAA J., 10, 514-16 (1972). For a swmnary,
see [1], -c. 6C1, pp. 283-284.

2~, I 1 I I I I I
I

f

(a) Rote

4 ~r(r)—

al
b

0
‘O 0.2 0,4 0.6 0,8 1.0

~or~

1.0

0.8

0.6

%

0.4

0.2

00
I 2
x

Fig. 6, Hunp cxmnple (non-monotone
A-dependence),

9


