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THE INITIATION FRANSIENT IN DILUTE EXP.OSIVES

Wildon Fickett
Los Alamos National Laboratory
Los Alamos, New Mexico 87545

perturbation on an inert flow.

proposed by the author.

running at different velocities.

appears only at second order.

L

In the context of the shock-initiation problem, we study analytically the
first effects of chemistry, treating a small chemical he:t release as 2
Specifically, we study the ipitial
transient in plane-shock initiation in a dilute explosive. where the
chanical energy 1s small relative to the mechanical-thamm:1 energy. The
vehicle for the study 1c the mathematical analog for reactive flow recently

The solution resembles a double refraction:
pressure or density is a superposition of two forward-joing waves, both
originating at the rear boundary, and carrying the same function, but
Surprisingly, this first-order solution
1s independent of the sensitivity of the reaction rate to the state, which

to first order, the

I. INTRODUCTION

We study analyt1cally a limiting case of the
general question, "How does the process of plane-
shock {nitiation depend on the properties of the
reaction rate?" To fix ideas, consider a system
obeying the usual equations of motion (the Euler
equations for inviscid compressible flow with
chanical ragction [1, Sec. 4A3]), with reaction
proceeding according to ¢ first-order Arrhenfus
rate law,

roek(1 - 2)eTT (1.1}

Here k {s the rate multiplier, T* is the
activation temperature, and A is the composition
or degree of reaction (for reaction A +~ B, ) is
the mass fraction of B). For the problem of
interest here, the multiplier k 1s a trivial
parameter, serving only to set ihe time scale.
The significant parameter fs T*; it determines
the sensitivity of the rate to the state. (In
this paper, we use the word "sensitive" only in
this sense, and not in the more common serse of
the sensitivity of the explosive to snme
fnitiating stimulus.)

Calculations show that the nature of the
fnitfation process depends strongly on the
sensitivity of the rate. Figure 1 contrasts
calculated initiat ion transients for sensitive
and insensitive rates [2]. The system is a
polytropic gas with reaction A + B obeying the
first-order Arrhenius rate {1,1). The detonation
is produced by & constant-velocity niston, and is

overdrivan, with a final steady-wave velocity D
which 1s /1.6 times the CJ value. The
insens‘tive rate has 1" = 0, and the sensitive
one has T* = 40T,, with T, the {nitial
temperature, The solution 1s presented as a
sequence of snapshats c¢f the pressure profile (h
is a Lagrangtan space variable), plus the
shock-prescure nistory.

The results for the two cases are quite
different. In the insen:itive case, Fig. la, the
reaction zone alweys has about the same shape as
the final steady state, axd the shock pressure
rises to its final steacdy value in a smooth,
monotona fashion. In the sensitive case, most of
the initia) reaction takes pla.e at the piston,
where the shocked material has been hot the
longest. This hot spot gives rise to a reactive
compressioa pulse. The pulie accelerates the
reaction locally by compression heating, and
grows as 1t goes, feeding an *he heat of
reacticn. The profiles becone humped - - that
1z, they have pressure maxime - - as the pulse
proceeds, As 1t overtakes th» shock, the shock
pressure rises rapidly and then falls, tracking
the shape of the rulse.

A much-used \nol for studying flows of this
type is the shock-chanqe equation [1, Sec. 4Abj.
We write i1t down here for later reference. It
expresses the rate of change of the shock
strength as the sum of a gradient term and a
reactiun term:

dpg/dt = -ap, + Bar. (.2)



Fickett (T3008)

™
70- » I o
p €0 v
\
50 s As08
- 4 nhe09®
*T_W__q__“ Y ) 3
z o\ v 099 ,
[
4
' [ ]
[ ]
10
. . |
"
10
2s s: 78 100 "
. -
.~/
[ ]
———
re 0 40 &0 & DO 0 M0
h
' T T T T
i
R 1
"“;60\\ - —— \ ,\-/\ﬁ\N
[ /' STEADY
§ w/S&UTION 1 STEADY SOLUTION
4 A
10 e Ed‘*‘“*13"**“”*13“‘*““*13“‘““‘iﬁ aaas
TIME, t TIME ¢

Fig. 1. Calculated shock initiation for (a) insentitive, and (b) sensitive reacticn rate.

Here py 1s the shock pressure, p, = (#p/ex) our mathematical analo? (set of mode! equaliuns)
1s the pressure gradient, a is tga thennlci%y of of reactive vlow [3], 1n the limiting case of
the reaction, r is the reaction rate, and a and B small heat of reaction q, with same restrictions
are positive-definite state fun-tion:, Al} on the form of the rate function. We use a
quantities rrfer to the shocked state, perturbation treatment, with the inert (q « 0)
case a3 the unperturbad reference flaw, and the
Some questions about the initiation problem ratio of chemical to mechanical energy as the
are: smallness parametar c.
(1) For what rates will sama profiles have a
hump? The solution resembles a double refraction:
(2) What are the important parameters of the it 1s the superposition of two forward-going
rate (e.g. sensitivity, A-dependence)? waves, both originating at the rear boundary, but
(3) Which of the two terms of the shock-change traveling at different spamds. Both waves cerry
equation is more important? the same function: the (steady) camposition

history of the reference flow.
We answer these questions analytically, for
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Examination of this solution (at first order
of the perturbation) yields several interesting
results:

(1) A precise criterion divides all rate
functions into two classes: those which produce
humped profiles and those which do not.

(2) The above criterion, and the solutions for
density p and pressure p, depend only on the
A-dependence of tre rate, and not on its
sensitivity to the state. Dependence on the
sensitivity appears only at second ordor.

(3) Of the two terms in the shock-charge
equation, the reaction term dominates: 1t is
larger in magnitude than the gradient term at all
times.

(4) In a comparison 11ke that of Fig. 1, we
give calculated results for a simple rate
functfon from each class of the item (1) above.
One resembles the insensi:ive case of Fig. 1; the
other 1is more 1ike the sensitive case.
Appropriste A-dependence of the rate produces
results similar to those characteristic of high
sensitivity.

How would we achieve our limiting case in
nractice? Dilution provides a dial on the
chemical energy density, and the strength of
drive provides a dial on the mechanical energy
density. But there 1s a constraint: at CJ, the
ratio of these two energies is of order one. To
make th', ratio small, we must overdrive the
detonation. In practice, the available strength
of drive 1s limited. A convenient way to get the
desired smal) eneryy ratio (large overdrive) is
to fix the mechanicel mnergy by choosing a
standard driver, and then make the chemical
energy small by dilution. This is the approach
used by Soloukhin and Brochet [4] in their study
of the onset of instability in gaseous systems.

We state the problem in Sec. I1, perform the
analysis in Sec. I1I, give the results in
Sec. IV, displuy the examples in Sec. V, and
summarize the results in Sec. VI. The skimming
reader should skip Sec. IIl (analysic) and
possibly also Sec. Il (detatled statemint of ths
prob1em{. The short recapitulation at the
beginning of Sec. IV should help to bridge the
gap.

IT. PROBLEM
The analog [3] is:
Py *+ Py " 0 (2.1)

Apomr

p = p(o,A)  equation of state
r=rip,) reaction rate.
Here x and t are "distance” (better: particle
label) and time, p and A are density and
campos‘tion, and p 1s "pressure."_Tha choice of

variable names 13 discussed in [3]. Those having
8 less direct connection with the original system

are in quotes here. Subscripts t, x, and (below)
p and A denote partial derivatives. Other
subscripts (below) are part of the symbol.

The fixed-camposition sound speed, which is
also the {acoustic) charasteristic speed, is
C = pp. For the equation of state we take

p=i(o? +aqr) , (2.2)
having

c*p ,
snd constant "heat of reaction" gq.

We study the initiation transient of an
overdriven detonation ariven by a constant
rear-boundary condivion (analagous to a
constant-velocity piston). Using (2.2) in (2.1)
and adding the appropriate initial and boundary
conditifons, we have as the governing equations
for our problem,

Pt * PPy *+ QAx = O (2.3)
Ay = r{p,A)
shock: A¢ = 0
D = kg
initial (on t = 0): Py = Ay =0

boundary (on x = 0): p = pplt)

=0, t<0

_ = pg t20
Subscript s denotes the state immediate!: behind
the shock, D 1s the shock velocity, subscript i
denotes the initial state, subscript b uenotes
the (rear) boundary, and subscript o denntes the
reaference flow defined below. The initial
condition py = 0 simplifies the shock reletion
(3, Sec. Vls). The boundary condition pp(t) fis
a step function, with p jumping from zero to the
constant value p, at t = 0,

wc find the s3iution for small g, treating g
as & small perturbation or the reference or
unperturbed flow, for which we take the solution
of the same problem with @ = 0. We show in the
next section, b{ scaling the equations, th:l the
appropriate smallness parameter is:

ceq/cg , (2.4)

essentially the ratio of the chemical to
mechanical aenergy.

The t-x uiagram for the flow {s shown in
Fig. 2. The acoustic characteristics, marked (+)
in the figure, carry information fram the
boundary to the shock. The other family of
characteristics [3] are less important in the
present problem and will not be mentioned furth~r
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here. The time T shown in the figure it the time
at each x after passage of the shock. It will be
used ir the frame transformation of the next
section.

The reference flow 1s a flat-topped shnck,
steady for all time. The shock velocity {s
D =D, * ,pg, With constant state (behipd the
shock) p = pg, € ™" Cog " Pps P " P -?3
The characteristics and sgock patg of Fig. 2 are
straight 1ines. Reaction proceeds behind the
shock and A increases with time, but this has no
effect on the state because the system has been
decoupled by tacing q = 0. For the steady
solution for A, we first define the mathematical
function Ao(y) (which will appear later with
different arguments) as the solution of the
ordinary differential equation:

dhg/dy = rlpgiAg) (2.5)
Ao =0 at y=0

Ve steady solution for A 1s Ay(7p), where

Ty Is the time T (Fig. 2) after snock passage

ag each x for the reference solution, that is,
To" t - x/0y . (2.6)

We call the function Ag(y) the reference
camposition function.

We place some restrictions on the form of
the rate function: We assume that reaction
proceeds in the forward direction only, so that
An(T) 15 @ monotone-1ncreas1n? function, and
tgat reaction is complete in finite time. We
also make the slightly more restrictive
assumption, not needed for all of the

1
{+
SHOCK
0g -—
X
Fig. 2. Characteristic and shock paths,

conclusions, that r(p,A) be expressible, Vike
(1.1)i as the product of functions of p and A,
that is,

r(p,A) = kf(p)g(r) . (2.7)
I11. ANALYSIS

The plan is as follows. First we scale the
equations to determine the appropriate smallness
parameter. Then we transform to an accelerated
frame 1n which time 1s measured from the shock.

In the new frame, we iinearize the equations

about the reference (steady q = 0) solution. We
solve these linear equations for the perturbations
in p and A by integrating along characteristics.
Finally, we transform back to the original frame.

Scaling

We scale our equations (2.3) to determine
the appropriate smallness parameter for tne
perturbation. Define a characteristic time t*, a
characteristic length x*, and the corresponding
implied characteristic velocity v* = x*/t*, The
substitution

X' mox/x*, t' e /Y, vt owop(vip' ALY (3.1)
p' = p/v*, q' = g/ (v*)?

gives the identical set of equations for the
primed variables.

We choose v* = ¢, so that py' = cy' = 1.
Our de=pendent variables are thus of o-der one.
We then take t* = 1, and choose the rate
multiplier k in (2.6) for unit reaction time in
the reference flow (for which f(p) = f(py) =
fcgpg') = flcg) = constant). This makes
our independent varfables of order one. The
appropricte smallness parameter {5 then q', which
ve call ¢

c~q' =aq/ch , (3.2)

as stated in (2.4). Cur solution is valid for
€ << 1,

Fran here on we drop the primes. Our
governing equations are then jusl the set (2.3),
with ¢ replacing q (and with the p-dependence of
the rate rescaled as required by (3.1).

Transformation to Accelerated Frame

We transform to the accelerated frame in
which time {is measured from the perturbed shock.
The distance x 1s unchanged, but the new time 1
at each x 15 measured fran the shock, as
indicated in Fig. 2. In the new trame, Fi?. 3,
the shock 1s the x axis, and the characteristics
have negative slope. In the figure, the
characteristics are drawn as straight lines, as
they are for the linearized equations. Tha point
t* {s for later reference.
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Fig. 3. Accelerated frame. Time T {s mea-

sured from the perturbed shock.

Define th> shack path in the original frame
by the function tg(x), the time of arrival of
the shock at a given x, so that the shock
velocity is D(x? = 1/(dtg/dx). he transforma-
tion equations are:

x"x , TEt-t(x) , (3.3)
with partial derivatives xy = 1, x4 = 0,
T ® -1/D(x), Ty = 1. Partial der}vatives of
f = por X transform as follows:
fy becones fy « D=1f, (3.4)
fy becomes fo .
In the new frame the system (2.3) becomes
(p - Dlor - oDpy = = He(Ae = DAy) . (3.5)
Ag " r
shock; t = 0: D = yp,

boundary, x = 0: pp = pg = constant, given ,
{with A¢ = 0; and pp = O for t < O under-
stood). Here D is B(x). the unknown shock
velocity; the transformation nuts it in the
coefficients of the first equation. The
boundary conditfon 1s unchanged. The shock
relation py(x) = 20(x) 1s also unchanged, but
now applies on the new shock path (the x axis).

Linearization

The reference flow is the ¢ = 0 solution:
the steady flat-topped shock with py = ¢4 = 1,
D ® hpo = iy, &nd A = 25(T). We write our
dependent variables as pe-turbation expansions:

p(x,T) = pg + £py(x,T) * O(€?) (3.6)

A(x,T) = Ap(T) + €Ay(x,T) + 0(e?)
D(x) = Dy + eDy(x) + 0(e2) ,

with perturbation functions py. Ay, and Dy
of order one, and order parameter € << 1.
Substituting these into (3.5) gives to order ¢

(po = Dole1t - PaDoP1x " = KTo (3.7)

M " 20 * Doty

where a, and by are the partial derivatives

of r wigh respect to p and A, evaluated in the
reference state. In obtaining the first equation
we have used (2.5), Agp = roq. We simplify by
substituting the numercal values Po " 1. Dg =
in the first term, and Dy = % in the second.

In the second term we replace py by cq, but
retain the symbol c, Instead of the numerical
value as reminder that the coefficient is a

velocity. The complete set of linearized
governing equations is then
Pir = CP1x " Mo (3.82)
A]T "apt boxl (3.8b)
shock: D] " Py " le(x,r-o) {3.8¢)
boundary: ppy * 0 (3.8d)

In these equations, ry, a2, and by are
known functions of t. For a g?ven rip,A) they
can be calculated fram the steady rate equation
(2.5). The two dJifferential eyuations are
uncoupled: (3.8a) can be solved by itya!f for
P 1.1;. and then (3.8b) can be solved for
AMix,t The shock-velocity perturbation

04 xs ts obtained from py(x,t=0) through the
shock relation (3.8¢).

Solutivn

We first solve the equation of motion
(3.8a). In characteristic form it is

dpr/dt = - ro(7) (3.9)
The characteristics are straight 1ines of slope
-Co originating an the rear boundary x = 0 and
running down to the shock t = 0, as shown in
Fig. 3. We integrate (3.9) along a
rharacteristic, starting at the boundary. Let
t*, Fig. 3, be the starting point of a particular
characteristic. Integration from t* tc some T on

on dx/dt = - ¢q
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the characteristic gives

py(T)-py(1%) = ~I(1,7%) = - Lor (v )T’ .

The boundary value p;(r' 1s zero by the
.8d

boundary condition ( We can write [ in
terms ofﬁ;he reference composition function

(3.10)

Aoly) =4 roly')dy' defined by (2.5) by
writing 1t as the sum of two integrals:

1,0 = fTro(slay - [Troney (1)
= Ag(T) - A (1Y)

We want py as a function of x and 1. For a
given point (x,t), T 1s the time at which the
characteristic through the point intersects the
x axis. Thus ™ = T + x/cy. rFram (3.10) and
(3.11) we have

py(x,1) = A (%) = A (1) (3.12)

o
LG IR .
x/cq

For the shock velocity, evaluate (3.12) at
T = 0 and use the shock relation (3.8¢). The
second Ay in (3.12) vanishes because A, 1s
zero at %he shock and we h ve

D](x) -y ko(x/co) . (3.13)

Knowing p1(x,1), we can solve (3.8b) for
A](x.t). At each x, (3.8b) 1s an ordinary
differential equation for Aj. Its solution is

b t =b_y
Ax,t) = ae 0 jgre o p](x.y)dy . (3.14)

For the pressure, we write p as p = p, +
€p1, and find that, to first order, the
pressure perturbation py 1s py = ¢gpy, SO
that py 1s the same as py.

Transformation to Original Frame

To return to the original t-x frame, we must
replace T by t-tg(x), see (3.3). Because the
shock-velocity perturbation (3.13) 1s non-2ero
for all positive x, the displacement of the shock
from its reference location becomes arbitrarily
large as x increases, and the correction to
tg(x) 1s secular; at large x we have

tg(x) = x/Dy + O(ex) . (3.15)
This property carries over into py. Replacing
T in (3.12) by t - t¢(x) and expanding each
Ao function in powers of ¢ about the zeroth
order argument t, = t - x/Dy, we find

py(xt) = Agla) = Ag(ry) + O(ex) | (3.16)

ast- x/c°

T, t- x/Do

The position error arising Yram the unbounded
shock displacement gives rise to a secular
second-order term with coefficient proportional
to x. In the original t-x frame, then, our
first- order result does not apply to arbitrarily
large x (we have essentially the correct solution
but at ‘he wrong location). Because we are
interested mainly in the initial transient, this
is not o serifous 1imitation. In any case, the
neture of the solution {s perfectly clear from
the =asult (3.12) 1in the t-x frame. The result
(3.15) applies 1n either frame, since it depends
only on x.

Wde will also need the gradient of py.
Taking the derivative of (3.16) with respect to
x, and replacing the derivatives of each A,
function with respect to its argument hy the
function rg, we have

Brxet) = (D) ro(1) = e} . (3.97)

1V, RESULTS

We recapitulate briefly. We have solved the
initiation problem for small heat of reaction g
by treating q as a small perturbation (subscript
1{ on the reference q = 0 flow (subscript o),
writing the dependent variables as

p(x,t) = pg + epy(x,t) , (4.1)

etc. With suitable scaling, both p and py are

of order one; the results are valid for values of

the smaliness parameter ¢ = q/ca much less

than one. We discuss only the dersity perturba-

tion py and the shock-velocity perturbation

Dy: these display most of the interesting

physics. (For brevity, we use the term

'perturbation” for o1 and Dy; the actua)

perturbations are of course epy, and eDy.)

The pressure perturbation 1s the same as thc

density perturbation, and the A-perturbation

can be calculated from (3.14) if desired. The

reference flow 15 a steady, flat-topped shock

with py = ¢q * 4Dy, The reference

canpos?tion funct?on Ac(y), which appears with

two different arguments in the result, {s the

solution of the steady rate equation (2.5) for

the reference flow. With argument 14 = t - x/D

;% is the composition history in the reforence
ow.

Density Perturbation

The density perturbation is

oy(x,t) = A (a) - 2 (v) (4.2)
a=t - x/c0 -t - x/ZD°

10 = t- x/Do ,

the shock-velocity perturbaticn is
D1(x) = \Agix/cy) (4.3)
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The shock-velocity perturbation fs just the
camposition history on the boundary, propagated
t» the shock along the unperturbed
characteristics,

The density perturbation (4.2) 1s the sum of
two traveling waves. We call them the transient
or acoustic wave (argument a) and the steady wave
(argument T). The steady wave propagates.tﬁe
reference composition history A,(1,) at the
reference shock velocity D,. Thus "1t 1s
identical to the steady composition solution of
the reference flow. The transient wave
propagates the same function, but at the
reference acoustic (= characteristic) speed,
which is twice as large (co » 20g). Thus the
transient wave passes through the steady wave and
overtakes the shock. This overtake i{s complete
in unit time; from then on the transient is over
and we have only the steady wave. Note that this
first-order density solution is attached to the
unperturbed shock path (see discussion at end of
previous section).

Rcle of the Rate Sensftivity

From (4.2) we see that the first-order
density perturbation does not depend on the rate
sensitivity. The reference composition function
Ao(y) is calculated in the constant-density
f?e1d of the reference solution, so the
dependence of r on p has no effect. (This
statement is strictly correct only if the rate
has the assumed product form (2.7{.

Criterion for a Hump

By definition, we have a hump 1f the
gradient py = ep1x changes sign with
increasing = at some point of a fixed-time
prof 1le. Fram (3.17), pix 1s

iy = (WD) (1) = ro(a) 1, (4.4)

where r, 1s the reaction rate 1n the reference
flow. ?o see how this applies, consider a

prof il1e at fixed time. Both a and T are linear
decreasing functions of x. At the rear, x = 0,
we have a = To = t. At the front, x = Dgt,

we have 1q = J, a = ist, Thus we have a > 1,
everywhere with equality at the rear. From (4.4)
we see then that pyy 2 O at the rear. What

must rqo do to make pyyx change sign at same

point? Consider f1rs§ an rqo(y), Fig. 4a, which
s monotone decreasing. At the rear, 1, and a
are equal, so rg{ty) = rgla), and py, 1$
positive. {In ghe figu-e, the rear point is
shown for a profile at t < 1.) At the front,
To*0anda=kt, sorgla) is lecs than

ro(t), ard pyx 1s still positive. It 1s

apparent that for this rate, pj, will be

positive for all x and there w]fl be no hump. To
have a hump, ro must increase sutfliciently
rapidly over part of {ts range, as in Fig., 4b, If
the slope of ro(y) s large enough, and t 43

not too large, we can have ry(a) > 2rg(1,)

and thus negative pyy over same ranne of x, and

therefore a hump in the profile.

Shock-Change Equation

The shock-change equation for the analog is
dps/dt = (¢ - D)p‘ +er/D . (4.5)
]

Linearization of this equat.un, with use of (4.4)
for oy, gives

doy/0t =[rotx/cy) - rl0)] + [r,@]] .

the first square bracket being the gradient term
and the second th2 reaction term. We see that:
Slg The reaction term is always positive,
2) The gradient term can have either sign,
depending on the form of the rate function.
(3) The reaction term deminates: 1t 15 never
smaller in magnitude than the gradient
term.
{4) The shock pressure is always monotone
increasing; it does not overshoot.

V. EXAMPLES

We give two examples, one witn, and one
without, a hump. The rates are functions of X
alone, so the subscrint o is unnecessary.

For no hump, we take a monotone-decreasing
rate 1ike that of Fig. 4a:

re2(1-2)1/2 (5.1)
Am)- () -1)2
Tel-(1-2)1/2
This rate is skown in Fig. 5a. The corresponding
solution (presented as a sequence of snapshots)
1s shown in Fig. 5b. Note the resemblance to
Fig. la.

For a hump, we take a nonmonotone rate like
that of Fig. 4b:

rek(h+8)(1 - N2 | gt
ye v a2 )0 e 2,
kr e 1 btann 1| (1 - 02

y: I(u - 1)/(a +1)!1-k1

=148 ,bz tanh! (1 +8)
k= - 20~ 1/2 tann-) (al/2)

Figure 6a shows this rate for 6 = 0.05. 1t mocks
up a branching-chatn mechanism with an induction
zona, 1ike that of hydrogen/oxygen and other
gaseous systems. 1t ‘s similar to one we ha-e
used earlier [5], but with a power of kb on the
the depletion term, to make the reaciion time
finite. The solution is shown in Fig. 6b. It i«
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(a) NO HUMP

(b) HUMP

Fig. 4. General form of the reaction-rate A-dependence for (a) no hump, and (b hump,

similar to the sensitive-rate case, F1g. 1b, in
having humped profiles and rise in shock
pressure, but the shock pressure does not
overshoot.

VI. SUMMARY

The reference (unperturbed) flow is a steady
flat-topped shock in a material made inert by
setting 1ts heat of roaction q to zero. This
flow has a steady reaction zone, but the
canposition variation has no effect on the state
because the system has been decoupled by setting
q to zero.

By turning on the heat of reaction (setting
q to a small positive valye), we make the system
(roughly sneaking) into an amplifier with ?ain c
» g/c§. It converts the composftion signa
of the referenco flow into a two-component
density signal, with steady camponent at the
fundamental (original) frequency, and transient
canponent at the first harmonic frequency (the
exact factor of two being an accident of our
particular choice of equation of state). The
harmonic wave travels through the steady wave and
disappears into the shock, giving the flow the
character of a double refraction .

The wave shapes during the transient phase
depend only on the A-dependence of the rate
(evaluated {n the constant state of the reference
flow). A monotone-decreasing r(i) pruduces
monotone prof iles and gently rising shock
strength, as in 7ig. 5 A sufficiently nun-
monotone r(\) producus humped profiles and

rapidly rising shock strength, as in Fig. 6.

The more complicated analysis of the same
problem for the phytical systam, as described by
the full Euler equations, is in progress. The
results, although not so easily calculated,
appear to have the same general nature as those
?1ven here. They suggest the possib*lity of

earning something about the A-dependence of the
rate fram pressure measuraments in dilute
explosives. In this inctance, as in others [3],
the analog has proved to be a reliable ?u1de to
the essential physics of the full set o
equations, but much easier to work with.
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